
Mission Evolution for Dungeon Levels
Daniel Karavolos

Institute of Digital Games
University of Malta

e-mail: daniel.karavolos@um.edu.mt

Antonios Liapis
Institute of Digital Games

University of Malta
e-mail: antonis.liapis@um.edu.mt

Georgios N. Yannakakis
Institute of Digital Games

University of Malta
e-mail: georgios.yannakakis@um.edu.mt

Abstract—This paper describes a search-based generative
method which creates game levels by evolving the intended
sequence of player actions rather than their spatial layout. The
proposed approach evolves graphs where nodes representing
player actions are linked to form one or more ways in which
a mission can be completed. Initially simple graphs containing
the mission’s starting and ending nodes are evolved via mutation
operators which expand and prune the graph topology. Evolution
is guided by several objective functions which capture game
design patterns such as exploration or balance.

I. INTRODUCTION

Procedural content generation (PCG) in games has received
considerable academic interest in the last decade, exploring
different ways to represent, generate and evaluate game con-
tent such as rulesets, card decks, puzzles, weapons, terrain,
etc. Among the most prominent generative techniques being
explored are search-based techniques [1] which often use
artificial evolution to explore a vast search space guided by
an objective function, and generative grammars [2] which
define the creation and expansion rules of an artifact and can
gradually increase its level of detail.

The dual representation for game levels (as a mission
and as a space) was first introduced in [2] and expanded
in [3], where the mission graph was created via a graph
grammar while the architecture was built from shape grammars
which rewrite mission nodes into rooms of various sizes.
The paradigm was applied to the game Dwarf Quest in [4],
where both mission graph and layout was created through
grammars: the layout solver places rooms on a 2D grid based
on the mission graph, obeying requirements on planarity and
orthogonality and applying pre-processing steps as needed
to repair non-conforming missions In [5], the generation of
missions and spaces in Dwarf Quest was enhanced through a
human-computer interface that allowed a human designer to
interject in (or replace) the generative grammars with her own
intuitions. The tool allowed the designer to create missions
in varying levels of detail, e.g. authoring a rough sketch of a
mission and letting the generative grammars to expand on that
sketch automatically (or with some human curation).

This paper presents a search-based approach for generating
levels through an indirect representation, evaluating and evolv-
ing the player’s sequence of possible actions rather than the
explicit sequence of rooms they have to visit. While the level
geometry and the action sequence are linked (i.e. the latter
constrains the former), the action sequence is a more concise

representation as they do not contain trivial information (such
as empty rooms or walls). Moreover, the action sequences are
represented as a graph of nodes while game levels tend to
be represented as some form of bit array [6]; this allows
the design of genetic operators (for adding, removing, or
connecting nodes) which have a better locality and result
in non-trivial yet non-destructive changes to the phenotype.
Finally, parsing the graph directly allows for fast and simple
evaluations of the decision density of a player traversing a
level from start to finish. The paper focuses on the generation
of mission graphs for the dungeon crawl game Dwarf Quest
(Wild Card Games 2013), with nodes representing the start
and end of the mission, puzzles, rewards and combat sections.

II. METHODOLOGY

A. Mission Representation

The evolved artifacts consist of mission graphs represented
as a list of nodes and edges. The nodes represent abstract
player actions, such as solving a puzzle. This abstract action
will later be transformed into a specific action by a grammar,
which is then transformed into one or more rooms in which the
action will take place by a layout solver. A more detailed de-
scription of this process is provided in [5]. There are 14 types
of nodes, split into four categories: fight, puzzle, reward, and
neutral. Fight nodes involve active opposition from monsters,
puzzle nodes involve passive opposition (e.g. locked doors or
trapped rooms), while reward nodes have no opposition but
provide power-ups for future fights Neutral nodes are the start
node, where the player is initially placed, and the end node
where the player completes the level; the goal of the mission
is to traverse the mission graph starting from the start node
and reaching the end node. For evolution, each node is stored
as an integer acting as the identifier of its node type. Edges
connect two nodes, and are represented by three parameters:
the index of the starting node, the index of the ending node,
and a flag on whether the edge is directed. Since the corridors
in Dwarf Quest are bidirectional the current work ignores the
third parameter, but this representation supports other game
modes involving e.g. one-way portals.

B. Mission Evolution

The generative approach evolves an initial population of
individuals in order to maximize a fitness function consisting
of one or more objectives. The initial population consists
of identical individuals representing the simplest possible



mission: a start node, an end node and an edge between them.
The following generations increase the topology of these initial
individuals, and after the first generation the selection process
favors individuals with a higher fitness. The algorithm uses an
elitism of 10%, making copies of the fittest parents in the next
generation; the remaining individuals in the next generation are
mutations of parents chosen via fitness-proportionate roulette
wheel selection. The same parent can be selected multiple
times, thus generating multiple mutated offspring. Evolution is
carried out via mutation alone, and each offspring is a copy of
its parent to which multiple mutation operators can be applied
based on a probability. Several mutation operators are designed
in order to change the topology of the mission graph while
obeying constraints to avoid undesirable results:

• Insert a node on an existing edge
• Add a node and an edge between two nodes
• Change a node’s type
• Delete a node 1

• Add an edge between two nodes
• Delete an edge between two nodes
Mutation operators do not affect neutral nodes, since this

affects the feasibility of the individual. Also, mutation op-
erators are not allowed to place more than one boss node
and more than one altar node per level; other node types are
chosen in those cases. The mutation probabilities are based
on preliminary testing and favor adding nodes and edges over
deleting them, as the latter is more disruptive in most fitness
landscapes.

C. Mission Objectives

There are several desirable patterns that evolved mission
graphs should exhibit. Inspired in part by the general design
patterns of [7] and their mathematical formulations in [8], five
fitness dimensions are designed to drive evolution (alone or
combined into a weighted sum). Steps have been taken to
convert all the metrics into a [0,1] value range, with high
scores representing more desirable content. Designer intuition
was applied to specify the desirable value ranges of several of
these metrics (e.g. a desired shortest path of 5 to 10 nodes).

• Shortest Path (fp). The number of nodes along the
shortest path between start and end nodes is normalized
by a bell curve to give optimal scores to paths with 5 to
10 nodes.

• Exploration (fe). Inspired by [8], this function uses flood
fill from the start node to evaluate how much the player
will need to explore the level before reaching the end
node. This metric is normalized to give optimal scores
to exploration covering three times as many nodes as the
shortest path.

• Variation (fv). The percentage of edges that connect
nodes of different categories, excluding start and end
nodes.

1A node is deleted with the following constraints: if the node has one edge,
both the node and its edge is deleted; if the node has two edges, an edge is
added linking the nodes connected to the deleted node; nodes with 3 or more
edges are not deleted as it would be too destructive.

(a) fp (b) fb (c) All

Fig. 1. Mission Graphs of the fittest individuals based on the single fitness
functions.

• Dispersed rewards (fs). Based on [8], the function evalu-
ates the number of nodes considered safe to rewards (i.e.
nodes which are much closer to one reward node versus
all other reward nodes).

• Balanced rewards (fb). Based on [8], the function eval-
uates whether every reward has an equal number of safe
nodes around it as every other reward.

D. From Mission Graphs to Levels

In order to create the game’s final levels, evolved mission
graphs are refined via the mixed-initiative grammar-based
system of [5], which creates a larger and more detailed
mission graph. This refined mission graph is converted into
Dwarf Quest levels by the layout solver described in [4],
which is in turn constrained by the map options of the
Dwarf Quest game. Due to the constraints of these systems,
several post-processing steps must be applied on the evolved
mission graphs. For example, non-neutral nodes with only one
connection are omitted, since Dwarf Quest rooms must have
at least two corridors. Also, if there are three nodes that are
all pair-wise connected, the layout solver cannot decide which
of the rooms to place first. To solve this, we insert an empty
node between one of the edges.

III. RESULTS

Figure 2 illustrates level architectures for Dwarf Quest
based on the evolved mission graphs of Figures 1 and ??.
The actual rooms which contain nodes in the mission graph
are shown in circles of different colors. The level in Fig. 2a is
created from the mission graph of Fig. 1c, which was evolved
to maximize all objectives. It is immediately obvious that most
rooms in the final level layout are empty and in many cases
form long corridors to connect the nodes. This is due to the
high branching factor of the graph in Fig. 1c, which forces
the layout solver to connect areas far away spatially to their
adjacent nodes in the mission graph. In contrast, the central
part of the dungeon has fewer empty rooms, with only a couple
of rooms between each pair of mission graph nodes.

It should be noted that simpler mission graphs with less
branching, such as the graph evolved for fp in Fig. 1a, result
in far fewer empty rooms as the level is essentially a single
path from start node to end node (see Fig. 2b). Similarly the
small yet branching mission evolved for fb in Fig. 1b creates
a similarly simple level (see Fig. 2c) which contains several
empty rooms without being exaggerated. The layout solver



(a) Level layout for all objectives

(b) Level layout for fp (c) Level layout for fb

Fig. 2. Level layouts created from missions of Fig. 1c, 1a and 1b. Rooms
included in the mission graph are highlighted as circles of different colors.
Red, yellow, and blue circles indicate fights, rewards, and puzzles. Gray
circles are the start node (left-most) and end node (right-most). In the above
illustrations, bright rooms were necessary to place this mission into space,
while dark rooms were added as part of the variation process.

used for these conversions seems less suited for creating levels
with high branching factors or complex topologies, which
is also evidenced by the need for the post-processing steps
described in Section II-D. By adjusting the layout solver to
place graph nodes closer to one another, many of the issues
of extraneous rooms could be avoided.

IV. CONCLUSION

This paper described an approach for generating game
levels by evolving their indirect representation (a player’s
action sequence) rather than their direct representation (room
layout). Mission graphs representing the possible paths of the
player for reaching the goal (end node) were evolved towards
different objectives inspired by general game design patterns
such as exploration, balance and safety of resources [7].

V. ACKNOWLEDGMENT

We would like to thank Dylan Nagel for giving us full access
to Dwarf Quest’s source code, as well as Rafael Bidarra and
Roland van der Linden for the layout solver of Dwarf Quest.
This work was supported, in part, by the FP7 Marie Curie CIG
project AutoGameDesign (project no: 630665).

REFERENCES

[1] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” Computa-
tional Intelligence and AI in Games, IEEE Transactions on, vol. 3, no. 3,
pp. 172–186, 2011.

[2] J. Dormans, “Adventures in level design: generating missions and spaces
for action adventure games,” in Proceedings of the FDG Workshop on
Procedural Content Generation in Games, 2010.

[3] J. Dormans and S. C. J. Bakkes, “Generating missions and spaces
for adaptable play experiences,” IEEE Transactions on Computational
Intelligence and AI in Games. Special Issue on Procedural Content
Generation, vol. 3, no. 3, pp. 216–228, 2011.

[4] R. van der Linden, “Designing procedurally generated levels,” Master’s
thesis, TU Delft, 2013.

[5] D. Karavolos, A. Bouwer, and R. Bidarra, “Mixed-initiative design of
game levels: Integrating mission and space into level generation,” in
Proceedings of the International Conference on the Foundations of Digital
Games, 2015.

[6] D. Ashlock, S. Risi, and J. Togelius, “Representations for search-based
methods,” in Procedural Content Generation in Games: A Textbook and
an Overview of Current Research. Springer, 2015, (In progress).

[7] S. Björk and J. Holopainen, Patterns in Game Design. Charles River
Media, 2004.

[8] A. Liapis, G. N. Yannakakis, and J. Togelius, “Towards a generic method
of evaluating game levels,” Proceedings of the AAAI Artificial Intelligence
for Interactive Digital Entertainment Conference, 2013.


